connected cototal domination number of a graph

نویسندگان

b basavanagoud

sunilkumar m hosamani

چکیده

a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the minimum cardinality of a minimal connected cototal dominating set of $g$. in this paper, we begin an investigation of connected cototal domination number and obtain some interesting results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connected Cototal Domination Number of a Graph

A dominating setD ⊆ V of a graphG = (V,E) is said to be a connected cototal dominating set if 〈D〉 is connected and 〈V −D〉 6= ∅, contains no isolated vertices. A connected cototal dominating set is said to be minimal if no proper subset of D is connected cototal dominating set. The connected cototal domination number γccl(G) of G is the minimum cardinality of a minimal connected cototal dominati...

متن کامل

Triple Connected Domination Number of a Graph

The concept of triple connected graphs with real life application was introduced in [7] by considering the existence of a path containing any three vertices of a graph G. In this paper, we introduce a new domination parameter, called Smarandachely triple connected domination number of a graph. A subset S of V of a nontrivial graph G is said to be Smarandachely triple connected dominating set, i...

متن کامل

Connected Domination Number of a Graph and its Complement

A set S of vertices in a graph G is a connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by S is connected. The connected domination number γc(G) is the minimum size of such a set. Let δ(G) = min{δ(G), δ(G)}, where G is the complement of G and δ(G) is the minimum vertex degree. We prove that when G and G are both connected, γc(G) + γc(G) ≤...

متن کامل

The outer-connected domination number of a graph

For a given graph G = (V,E), a set D ⊆ V (G) is said to be an outerconnected dominating set if D is dominating and the graph G−D is connected. The outer-connected domination number of a graph G, denoted by γ̃c(G), is the cardinality of a minimum outer-connected dominating set of G. We study several properties of outer-connected dominating sets and give some bounds on the outer-connected dominati...

متن کامل

The convex domination subdivision number of a graph

Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...

متن کامل

DOMINATION NUMBER OF TOTAL GRAPH OF MODULE

 Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

ناشر: university of isfahan

ISSN 2251-8657

دوره 1

شماره 2 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023